Altered Kinematic Coordination in Above-Knee Amputees May Be Key to Improving Control of Powered Prostheses

Elad Siman Tov, Nili E. Krausz

Neuro-Robotics and Bionic Limbs (eNaBLe) Lab Faculty of Mechanical Engineering, Technion

Introduction

- Elevation angles of thigh, shank and foot covary along a plane (CVP) in walking [1].
- The tilt of the covariation plane (CVP) is related to the **mechanical energy cost** [2].
- In transfemoral amputees (TFA), a major problem is elevated metabolic cost even when equipped with powered legs [3].

- Phase shifts between Amputated and Contralateral legs.
- Lower range of motion of the limb axis orientation PCs.
- **Prosthesis controllers** may be following a correct joint angle trajectory, but they are **not coordinating** correctly.

• Human motor control of limb axis length and orientation can explain this CVP [4].

• Our current hypothesis is that metabolic cost is elevated due to altered coordination by TF amputees.

Methods

- Able bodied, K3 (community ambulation), K2 (limited ambulation), powered, and passive prostheses datasets.
- Elevation angles, Principal Components, and relation to limb axis.
 K2 subjects
 K3 subjects

Figure 2. (A) Limb axis PCs*, (B) Covariation Plane, (C) Shank Foot

Conclusions

- **Coordination is altered** for amputee gait with both Powered and Passive prostheses.
- This alteration is tied to control of limb length → increased energetic cost might result from greater need to "lift" the center of mass [5].
- Altered coordination among K2 subjects (with worse gait outcomes) is due to reduced motion of the shank versus the foot.
- Powered prostheses may be unsuccessful for reducing metabolic cost versus passive since their current control seems to worsen limb coordination.

Coordination for TFA vs AB gait.

Can control of prosthetic legs lower metabolic cost by using limb coordination as a virtual constraint?

This work was funded by the Israel Science Foundation grant 2937/24

[1] N. Alberto Borghese, Luigi Bianchi, and Francesco Lacquaniti. "Kinematic Determinants of Human Locomotion." The Journal of Physiology 494, no. 3 (August 1, 1996): 863–79. https://doi.org/10.1113/jphysiol.1996.sp021539.

[2] Luigi Bianchi, Daniela F. Angelini, G. P. Orani, and Francesco Lacquaniti. "Kinematic Coordination in Human Gait: Relation to Mechanical Energy Cost." *Journal of Neurophysiology* 79, no. 4 (April 1, 1998): 2155–70. https://doi.org/10.1152/jn.1998.79.4.2155.
 [3] Rachel Gehlhar, Maegan Tucker, Aaron Young, and Aaron D. Ames. "A Review of Current State-of-the-Art Control Methods for Lower-Limb Powered Prostheses" 55 (January 1, 2023): 142–64. https://doi.org/10.1016/j.arcontrol.2023.03.003.
 [4] Ivanenko, Yuri P., Germana Cappellini, Nadia Dominici, Richard E. Poppele, and Francesco Lacquaniti. "Modular Control of Limb Movements during Human Locomotion." *Journal of Neuroscience* 27, no. 41 (October 10, 2007): 11149–61. https://doi.org/10.1523/JNEUROSCI.2644-07.2007.
 [5] Dewolf, A. H., Y. Ivanenko, K. E. Zelik, F. Lacquaniti, and P. A. Willems. "Kinematic Patterns While Walking on a Slope at Different Speeds." Journal of Applied Physiology 125, no. 2 (August 1, 2018): 642–53. https://doi.org/10.1152/japplphysiol.01020.2017.
 * Limb axis PCs computed by projecting the [1,1,1] direction on the CVP and finding its normal vector on the plane.
 * Background image taken from https://www.shutterstock.com/search/amputee-leg c